Мышечные ткани – это специализированные ткани, ос­новной функцией которых является сокращение. Благодаря им обеспечиваются все двигательные процессы в организме (гемоциркуляция в сосудах, ритмическая деятельность мио­карда, перистальтика пищеварительного тракта и другие, а также перемещение организма в пространстве). Сокращение структурных элементов мышечных тканей осуществляется с помощью специальных органелл – миофибрилл – и является результатом взаимодействия молекул сократительных бел­ков.

Существуют две классификации мышечных тканей – морфофункциональная и генетическая. Согласно первой классификации мышечные ткани делят на две группы: 1) гладкая (неисчерченная) мышечная ткань, которая характе­ризуется тем, что содержит миофибриллы, не имеющие по­перечной исчерченности; 2) поперечнополосатая (исчер­ченная) мышечная ткань, миофибриллы которой образуют поперечную исчерченность. В свою очередь, она подразделя­ется на скелетную и сердечную . Согласно генетической классификации (по происхождению), мышечные ткани делят на 5 типов: 1) мезенхимные (развиваются из мезенхимы, на­ходятся во внутренних органах и сосудах); 2) эпидермаль­ные (развиваются из кожной эктодермы, включают немы­шечные сокращающиеся клетки – миоэпителиальные клетки потовых, молочных, слюнных и слезных желез); 3) нейраль­ные (развиваются из нервной трубки, к ним принадлежат гладкие миоциты мышц радужной оболочки глаза); 4) сома­тические (развиваются из миотомов мезодермы и образуют скелетную мышечную ткань); 5) целомические (развиваются из висцерального листка спланхнотома и образуют сердеч­ную мышечную ткань). Первые три типа относятся к гладким мышечным тканям, остальные – к поперечнополосатым. К общим структурным признакам, характерным для мышечных тканей, следует отнести наличие: 1)специальных органелл – миофибрилл, благодаря взаимодействию их сократительных белков, осуществляется сокращение; 2)развитого трофиче­ского аппарата, обеспечивающего выполнение сократитель­ной функции – митохондрий, гладкой эндоплазматической сети, включений гликогена и миоглобина; 3)развитого опор­ного аппарата в виде двуслойной оболочки с окружающей ее сетью волокон соединительной ткани.

Гладкая мышечная ткань

Гладкая мышечная ткань мезенхимного происхожде­ния располагается в стенке внутренних органов и сосудов. Структурной единицей ее является гладкий мио­цит . Это клетка веретеновидной, иногда отростчатой формы (матка, эндокард, аорта), длиной 20-500 мкм, с центрально располо­женным ядром (рис. 7-1). Цитолемма гладкого мио­цита обра­зует многочисленные впячивания – кавеолы (мел­кие пу­зырьки). Снаружи цитолемму покрывает тонкая ба­зальная мембрана. В базальной мембране каждого миоцита есть от­верстия, где клетки контактируют друг с другом при помощи нексусов, осуществляющих метаболические связи.

Органеллы общего значения – комплекс Гольджи, мито­хондрии, свободные рибосомы, саркоплазматическая сеть – локализуются в основном около полюсов ядра. Наиболее развитыми и многочисленными из них являются митохонд­рии . Саркоплазматическая сеть участвует в синтезе гликоза­миногликанов и белковых молекул, из которых осуществля­ется сборка компонентов базальной мембраны, волокон, аморфного вещества, окружающих клетки. Синтетическая способность дефинитивных миоцитов снижается. Длинные узкие трубочки гладкой саркоплазматической сети, примы­кают к кавеолам и вместе с ними служат для депонирования ионов кальция.

Специальные органеллы видны в виде нитей, ориенти­рованных преимущественно вдоль длинной оси клетки и не имеющих поперечной исчерченности. В цитоплазме миоци­тов стабильно выявляются только тонкие нити – миофила­менты, состоящие из белка актина. Они прикрепляются на внутренней стороне цитолеммы, образуя плотные тельца, состоящие из белка актинина. При изменении мембранного потенциала клетки ионы кальция, поступающие из депо, ак­тивируют сборку миозиновых (более толстых) нитей и их взаимодействие с актиновыми. По мере образования актин-миозиновых мостиков происходит смещение актиновых миофиламентов навстречу друг другу, тяга передается на цитолемму, и клетка укорачивается. При уменьшении содер­жания кальция миозин теряет сродство к актину. В резуль­тате начинается расслабление миоцита и разборка миозино­вых нитей. Сокращение медленное, тоническое.

Рис. 7-1. Гладко-мышечная клет-ка.

1. Митохондрии.

2. Базальная мембрана.

3. Плотные тельца.

4. Зона щелевидных контактов.

5. Актиновые миофиламенты.

6. Ядро.

7. Кавеолы.

(По Lentz T. L. 1971).

Иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой – симпатическими и пара­симпатическими нервными волокнами, терминали которых формируют варикозные расширения на гладкомышечных клетках. Гладкие миоциты функционируют не изолированно, а клеточными комплексами. Клетки контактируют друг с другом при помощи нексусов. Последние способствуют про­ведению возбуждения от клетки к клетке, охватывая сразу группу миоцитов. В составе комплексов есть также мио­циты-пейсмекеры, которые сами генерируют потенциал дей­ствия и передают его соседним клеткам.

Вокруг каждого гладкого миоцита из ретикулярных, эластических и коллагеновых волокон образуется сетка – эн­домизий . Группы из 10-12 клеток объединяются в мышечные пласты, окруженные соединительной тканью с кровеносными сосудами и нервами, называемой перимизием . В органах пучки мышечных клеток формируют слои мышечной ткани. Совокупность пучков образует мышцу, которая окружена более толстой прослойкой соединительной ткани – эпими­зием . При повышенной функциональной нагрузке гладкие миоциты гипертрофируются, как, например, в матке во время беременности, проявляя высокую способность к физиологи­ческой регенерации. При репаративной регенерации восста­новление возможно за счет деления малодифференцирован­ных миоцитов, которые находятся в составе мышечных ком­плексов, а также из адвентициальных клеток и миофиброб­ластов.

Мы́шечные тка́ни (лат. textus muscularis - «ткань мышечная») - ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина - при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

По происхождению и строению мышечные ткани значительно отличаются друг от друга, но их объединяет способность к сокращению, что обеспечивает двигательную функцию органов и организма в целом. Мышечные элементы вытянуты в длину и связаны либо с другими мышечными элементами, либо с опорными образованиями.

Разновидности мышечной ткани

Различают гладкую, поперечнополосатую мышечные ткани и мышечную ткань сердца.

Гладкая мышечная ткань.

Эта ткань образована из мезенхимы. Структурной единицей этой ткани является гладкомышечная клетка. Она имеет вытянутую веретенообразную форму и покрыта клеточной оболочкой. Эти клетки плотно прилегают друг к другу, образуя слои и группы, разделенные между собой рыхлой неоформленной соединительной тканью.

Ядро клетки имеет вытянутую форму и находится в центре. В цитоплазме расположены миофибриллы, они идут по периферии клетки вдоль ее оси. Состоят из тонких нитей и являются сократительным элементом мышцы.

Клетки располагаются в стенках сосудов и большинства внутренних полых органов (желудка, кишечника, матки, мочевого пузыря). Деятельность гладких мышц регулируется вегетативной нервной системой. Мышечные сокращения не подчиняются воле человека и поэтому гладкую мышечную ткань называют непроизвольной мускулатурой.

Поперечнополосатая мышечная ткань.

Эта ткань образовалась из миотом, производных мезодермы. Структурной единицей этой ткани является поперечнополосатое мышечное волокно. Это цилиндрическое тело, является симпластом. Оно покрыто оболочкой — сарколемой, а цитоплазма называется – саркоплазмой, в которой находятся многочисленные ядра и миофибриллы. Миофибриллы образуют пучок непрерывных волоконец идущих от одного конца волокна до другого параллельно его оси. Каждая миофибрилла состоит из дисков имеющих разный химический состав и под микроскопом кажущихся темными и светлыми. Однородные диски всех миофибрилл совпадают, и поэтому мышечное волокно представляется поперечнополосатым. Миофибриллы являются сократительным аппаратом мышечного волокна.

Из поперечнополосатой мышечной ткани построена вся скелетная мускулатура. Мускулатура является произвольной, т.к. ее сокращение может возникать под влиянием нейронов двигательной зоны коры больших полушарий.

Мышечная ткань сердца.

Миокард — средний слой сердца — построен из поперечнополосатых мышечных клеток (кардиомиоцитов). Имеются два вида клеток: типичные сократительные клетки и атипичные сердечные миоциты, составляющие проводящую систему сердца.

Типичные мышечные клетки выполняют сократительную функцию; они прямоугольной формы, в центре находятся 1-2 ядра, миофибриллы расположены по периферии. Между соседними миоцитами имеются вставочные диски. С их помощью миоциты собираются в мышечные волокна, разделенные между собой тонковолокнистой соединительной тканью. Между соседними мышечными волокнами проходят соединительные волокна, которые обеспечивают сокращение миокарда, как единого целого.

Проводящая система сердца образована мышечными волокнами, состоящими из атипичных мышечных клеток. Они более крупные, чем сократительные, богаче саркоплазмой, но беднее миофибриллами, которые часто перекрещиваются. Ядра крупнее и не всегда находятся в центре. Волокна проводящей системы окружены густым сплетением нервных волокон.

6. Мышечные ткани: функции, виды

Мышечные ткани . Двигательные процессы в организме человека и животного обусловлены сокращением мышечной ткани, обладающей сократительными структурами. К мышечной ткани относят неисчерченную (гладкую) и исчерченную (поперечнополосатую) мышечную ткань, включающую скелетную и сердечную .

Сократительными элементами являются мышечные фибриллы — миофибриллы (мышечные нити). Клетки мышечной ткани — миоциты . Мышечные ткани обладают возбудимостью и сократимостью.


Мышечная ткань (Стерки П., 1984).

а — продольное сечение скелетной мышцы; б — сердечная исчерченная мышечная ткань; в — неисчерченная (гладкая) мышечная ткань; 1 — сарколемма; 2 — поперечная исчерченность; 3 — ядра; 4 — вставочные диски; 5 — гладкомышечные клетки

Три вида мышечной ткани:

Гладкая мышечная ткань — состоит из веретеновидных клеток с продольной исчерченностью.

Особенности: длительно сокращается; долго находится в сокращённом состоянии; сокращается непроизвольно.

Образует стенки сосудов и кишечника.

Гладкие мышечные волокна .

1 — протоплазма; 2 — ядро

Поперечнополосатая скелетно-мышечная ткань — клетки цилиндрической формы с поперечнополосатой исчерченностью.

Особенности: сокращаются быстро; долго находятся в сокращённом состоянии; на сокращение тратится не много энергии; сокращается не произвольно, а по нашему желанию.

Образует скелетные мышцы, мышцы языка, глотку и части пищевода.

Поперечнополосатая сердечная мышечная ткань .

Особенности: похожа на поперечнополосатую скелетно-мышечную, но есть вставочные диски и анастомозы; сокращается произвольно, не зависимо от нашего сознания; есть атипичные клетки, которые образуют проводящую систему.

Образует мышцы сердца.


Поперечнополосатые мышечные волокна . Видны ядра и поперечная исчерченность.

Левое волокно разорвано; в месите разрыва видна сарколемма

12Следующая ⇒

Мышечная ткань: виды, особенности строения, месторасположение в организме

Мышечные ткани (textus musculares) – это специализированные ткани, которые обеспечивают движение (перемещение в пространстве) организма в целом, а также его частей и внутренних органов. Сокращение мышечных клеток или волокон осуществляется с помощью миофиламентов и специальных органелл – миофибрилл и является результатом взаимодействия молекул сократительных белков.

Согласно морфункциональной классификации, мышечные ткани делят на две группы:

I – поперечнополосатая (исчерченная) мышечная ткань – содержит постоянно комплексы актиновых и миозиновых миофиламентов – миофибриллы и имеет поперечную исчерченность;

II – гладкая (неисчерченная) мышечная ткань – состоит из клеток, которые постоянно содержат только актиновые миофиламенты и не имеют поперечной исчерченности.

Поперечнополосатая мышечная ткань

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную .

Обе эти разновидности развиваются из мезодермы .

Поперечнополосатая скелетная мышечная ткань. Эта ткань образует скелетные мышцы, мышцы рта, глотки, частично пищевода, мышцы промежности и др.

В разных отделах она имеет свои особенности. Обладает высокой скоростью сокращения и быстрой утомляемостью. Этот тип сократительной деятельности называется тетаническим . Поперечнополосатая скелетная мышечная ткань сокращается произвольно в ответ на импульсы, идущие от коры больших полушарий головного мозга. Однако часть мышц (межреберные, диафрагма и др.) имеет не только произвольный характер сокращения, но и сокращается без участия сознания под влиянием импульсов из дыхательного центра, а мышцы глотки и пищевода сокращаются непроизвольно.

Структурной единицей является поперечнополосатое мышечное волокно – симпласт, цилиндрической формы с округлыми или заостренными концами, которыми волокна прилежат друг к другу или вплетаются в соединительную ткань сухожилий и фасций.

Сократительным аппаратом их являются поперечнополосатые миофибриллы , которые образуют пучок волоконец.

Это белковые нити, расположенные вдоль волокна. Длина их совпадает с длиной мышечного волокна. Миофибриллы состоят из темных и светлых участков – дисков . Так как темные и светлые диски всех миофибрилл одного мышечного волокна располагаются на одном уровне, образуется поперечная исчерченность; поэтому мышечное волокно называется поперечнополосатым.Темные диски в поляризованном свете имеют двойное лучепреломление и называются анизотропными, или А-дисками; светлые диски не имеют двойного лучепреломления и называются изотропными, или I-дисками.

Разная светопреломляющая способность дисков обусловлена их различным строением.

Светлые (I) диски однородны по составу: образованы только параллельно лежащими тонкими нитями – актиновыми миофиламентами , состоящими преимущественно из белка актина , а также тропонина и тропомиозина . Темные (А) диски неоднородны: образованы как толстыми миозиновыми миофиламентами , состоящими из белка миозина , так и частично проникающими между ними тонкими актиновыми миофиламентами .

В середине каждого I–диска проходит темная линия, которая называется Z–линией, или телофрагмой .

К ней прикрепляется один конец актиновых нитей. Участок миофибриллы между двумя телофрагмами называется саркомером . Саркомер – структурно-функциональная единица миофибриллы. В центре A-диска можно выделить светлую полосу, или зону Н , содержащую только толстые нити. В середине ее выделяется тонкая темная линия М, или мезофрагма . Таким образом, каждый саркомер содержит один А-диск и две половины I-диска .

Поперечнополосатая сердечная мышечная ткань. Образует миокард сердца.

Содержит, как и скелетная, миофибриллы, состоящие из темных и светлых дисков. Состоит из клеток – кардиомиоцитов , связанных между собой вставочными дисками.

При этом образуются цепочки кардиомиоцитов – функциональные мышечные волокна, которые анастомозируют между собой (переходят одно в другое), образуя сеть. Такая система соединений обеспечивает сокращение миокарда как единого целого. Сокращение сердечной мышцы непроизвольное , регулируется вегетативной нервной системой.

Среди кардиомиоцитов различают:

  • сократительные (рабочие) кардиомиоциты – содержат меньше миофибрилл, чем скелетные мышечные волокна, но очень много митохондрий, поэтому сокращаются с меньшей силой, но долго не утомляются; с помощью вставочных дисков осуществляют механическую и электрическую связь кардиомиоцитов;
  • атипичные (проводящие) кардиомиоциты – образуют проводящую систему сердца для формирования и проведения импульсов к сократительным кардиомиоцитам;
  • секреторные кардиомиоциты – располагаются в предсердиях, способны вырабатывать гормоноподобный пептид – натрий-уретический фактор , снижающий артериальное давление.

Гладкая мышечная ткань

Развивается из мезенхимы, располагается в стенке трубчатых органов (кишечник, мочеточник, мочевой пузырь, кровеносные сосуды), а также радужке и цилиарном (ресничном) теле глаза и мышцах, поднимающих волосы в коже.

Гладкая мышечная ткань имеет клеточное строение (гладкий миоцит) и обладает сократительным аппаратом в виде гладких миофибрилл .

Она сокращается медленно и способна длительно находиться в состоянии сокращения, потребляя относительно малое количество энергии и не утомляясь. Такой тип сократительной деятельности называется тоническим . К гладкой мышечной ткани подходят вегетативные нервы, и в отличие от скелетной мышечной ткани она не подчиняется сознанию, хотя и находится под контролем коры больших полушарий головного мозга.

Гладкомышечная клетка имеет веретенообразную форму и заостренные концы.

В ней есть ядро, цитоплазма (саркоплазма), органеллы и оболочка (сарколемма). Сократительные миофибриллы располагаются по периферии клеток вдоль ее оси. Эти клетки плотно прилежат друг к другу. Опорным аппаратом в гладкой мышечной ткани являются тонкие коллагеновые и эластические волокна, расположенные вокруг клеток и связывающие их между собой.

12Следующая ⇒

Похожая информация:

Поиск на сайте:

Образование

Функции мышечных тканей, виды и структура

Организм всех животных, в том числе и человека, состоит из четырех типов тканей: эпителиальной, нервной, соединительной и мышечной. О последней и пойдет речь в данной статье.

Разновидности мышечной ткани

Она бывает трех видов:

  • поперечно-полосатая;
  • гладкая;
  • сердечная.

Функции мышечных тканей разных видов несколько отличаются.

Да и строение тоже.

Где находятся мышечные ткани в организме человека?

Мышечные ткани разных видов занимают различное местоположение в организме животных и человека.

Так, из сердечной мускулатуры, как понятно из названия, построено сердце.

Из поперечно-полосатой мышечной ткани образуются скелетные мускулы.

Гладкие мышцы выстилают изнутри полости органов, которым необходимо сокращаться. Это, к примеру, кишечник, мочевой пузырь, матка, желудок и т.д.

Структура мышечной ткани разных видов различается. О ней поговорим подробнее дальше.

Видео по теме

Как устроена мышечная ткань?

Она состоит из больших по размеру клеток — миоцитов.

Они также еще называются волокнами. Клетки мышечной ткани обладают несколькими ядрами и большим количеством митохондрий — органоидов, отвечающих за выработку энергии.

Кроме того, строение мышечной ткани человека и животных предусматривает наличие небольшого количества межклеточного вещества, содержащего коллаген, который придает мышцам эластичность.

Давайте рассмотрим строение и функции мышечных тканей разных видов по отдельности.

Структура и роль гладкой мышечной ткани

Данная ткань контролируется вегетативной нервной системой.

Поэтому человек не может сокращать сознательно мышцы, построенные из гладкой ткани.

Формируется она из мезенхимы. Это разновидность эмбриональной соединительной ткани.

Сокращается данная ткань намного менее активно и быстро, чем поперечно-полосатая.

Гладкая ткань построена из миоцитов веретеновидной формы с заостренными концами.

Длина данных клеток может составлять от 100 до 500 микрометров, а толщина — около 10 микрометров. Клетки данной ткани являются одноядерными. Ядро расположено в центре миоцита. Кроме того, хорошо развиты такие органоиды, как агранулярная ЭПС и митохондрии. Также в клетках гладкой мышечной ткани присутствует большое количество включений из гликогена, которые представляют собой запасы питательных веществ.

Элементом, который обеспечивает сокращение мышечной ткани данного вида, являются миофиламенты.

Они могут быть построены из двух сократительных белков: актина и миозина. Диаметр миофиламентов, которые состоят из миозина, составляет 17 нанометров, а тех, которые построены из актина — 7 нанометров. Существуют также промежуточные миофиламенты, диаметр которых составляет 10 нанометров. Ориентация миофибрилл продольная.

В состав мышечной ткани данного вида также входит межклеточное вещество из коллагена, которое обеспечивает связь между отдельными миоцитами.

Функции мышечных тканей этого вида:

  • Сфинктерная.

    Заключается в том, что из гладких тканей устроены круговые мышцы, регулирующие переход содержимого из одного органа в другой или из одной части органа в другую.

  • Эвакуаторная. Заключается в том, что гладкие мышцы помогают организму выводить ненужные вещества, а также принимают участие в процессе родов.
  • Создание просвета сосудов.
  • Формирование связочного аппарата. Благодаря ему многие органы, такие как, например, почки, удерживаются на своем месте.

Теперь давайте рассмотрим следующий вид мышечной ткани.

Поперечно-полосатая

Она регулируется соматической нервной системой.

Поэтому человек может сознательно регулировать работу мышц данного вида. Из поперечно-полосатой ткани формируется скелетная мускулатура.

Данная ткань состоит из волокон. Это клетки, которые обладают множеством ядер, расположенных ближе к плазматической мембране. Кроме того, в них находится большое количество гликогеновых включений. Хорошо развиты такие органоиды, как митохондрии.

Они находятся вблизи сократительных элементов клетки. Все остальные органеллы локализуются неподалеку от ядер и развиты слабо.

Структурами, благодаря которым поперечно-полосатая ткань сокращается, являются миофибриллы.

Их диаметр составляет от одного до двух микрометров. Миофибриллы занимают большую часть клетки и расположены в ее центре. Ориентация миофибрилл продольная. Они состоят из светлых и темных дисков, которые чередуются, что и создает поперечную «полосатость» ткани.

Функции мышечных тканей данного вида:

  • Обеспечивают перемещение тела в пространстве.
  • Отвечают за передвижение частей тела друг относительно друга.
  • Способны к поддержанию позы организма.
  • Участвуют в процессе регуляции температуры: чем активнее сокращаются мышцы, тем выше температура.

    При замерзании поперечно-полосатые мышцы могут начать сокращаться непроизвольно. Этим и объясняется дрожь в теле.

  • Выполняют защитную функцию. Особенно это касается мышц брюшного пресса, которые защищают многие внутренние органы от механических повреждений.
  • Выступают в роли депо воды и солей.

Сердечная мышечная ткань

Данная ткань похожа одновременно и на поперечно-полосатую, и на гладкую. Как и гладкая, она регулируется вегетативной нервной системой.

Однако сокращается она так же активно, как и поперечно-полосатая.

Состоит она из клеток, называющихся кардиомиоцитами.

Функции мышечной ткани данного вида:

  • Она всего одна: обеспечение передвижения крови по организму.

Мышечные ткани (лат. textus muscularis) - ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина - при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией.Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

Состоит из одноядерных клеток - миоцитов веретеновидной формы длиной 20-500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности. Эта ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть ее деятельность не управляется по воле человека). Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника).

Состоит из миоцитов, имеющих большую длину (до нескольких сантиметров) и диаметр 50-100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование темных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть ее деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц, а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы.Волокна длиной от 10 до 12 см.

Состоит из 1 или 2-х ядерных кардиомиоцитов, имеющих поперечную исчерченность цитоплазмы(по периферии цитолеммы). Кардиомиоциты разветвлены и образуют между собой соединения - вставочные диски, в которых объединяется их цитоплазма.Существует также другой межклеточный контакт- аностамозы(впячивание цитолеммы одной клетки в цитолемму другой) Этот вид мышечной ткани образует миокард сердца. Развивается из миоэпикардальной пластинки (висцерального листка спланхнотома шеи зародыша) Особым свойством этой ткани является автоматия - способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках(типичные кардиомиоциты). Эта ткань является непроизвольной(атипичные кардиомиоциты). Существует 3-й вид кардиомиоцитов- секреторные кардиомиоциты (в них нет фибрилл) Они синтезируют гормон тропонин, понижающий АД и расширяющий стенки кровеносных сосудов.

По морфологическим признакам выделяют три группы мышц:

1) поперечно-полосатые мышцы (скелетные мышцы);

2) гладкие мышцы;

3) сердечную мышцу (или миокард).

Функции поперечно-полосатых мышц:

1) двигательная (динамическая и статическая);

2) обеспечения дыхания;

3) мимическая;

4) рецепторная;

5) депонирующая;

6) терморегуляторная.

Функции гладких мышц:

1) поддержание давления в полых органах;

2) регуляция давления в кровеносных сосудах;

3) опорожнение полых органов и продвижение их содержимого.

Функция сердечной мышцы – насосная, обеспечение движения крови по сосудам.

1) возбудимость (ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала);

2) низкая проводимость, порядка 10–13 м/с;

3) рефрактерность (занимает по времени больший отрезок, чем у нервного волокна);

4) лабильность;

5) сократимость (способность укорачиваться или развивать напряжение).

Различают два вида сокращения:

а) изотоническое сокращение (изменяется длина, тонус не меняется);

б) изометрическое сокращение (изменяется тонус без изменения длины волокна). Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов;

6) эластичность (способность развивать напряжение при растягивании).

Физиологические особенности гладких мышц.

Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности:

1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоянного частичного сокращения – тонуса;

2) самопроизвольную автоматическую активность;

3) сокращение в ответ на растяжение;

4) пластичность (уменьшение растяжения при увеличении растяжения);

5) высокую чувствительность к химическим веществам.

Физиологической особенностью сердечной мышцы является ее автоматизм . Возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце. Способностью к автоматизму обладают определенные атипические мышечные участки миокарда, бедные миофибриллами и богатые саркоплазмой.

2. Механизмы мышечного сокращения

Электрохимический этап мышечного сокращения.

1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина (АХ) с холинорецепторами приводит к их активации и появлению потенциала действия, что является первым этапом мышечного сокращения.

2. Распространение потенциала действия. Потенциал действия распространяется внутрь мышечного волокна по поперечной системе трубочек, которая является связывающим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна.

3. Электрическая стимуляция места контакта приводит к активации фермента и образованию инозилтрифосфата, который активирует кальциевые каналы мембран, что приводит к выходу ионов Ca и повышению их внутриклеточной концентрации.

Хемомеханический этап мышечного сокращения.

Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории:

1) ионы Ca запускают механизм мышечного сокращения;

2) за счет ионов Ca происходит скольжение тонких актиновых нитей по отношению к миозиновым.

В покое, когда ионов Ca мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательно заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca:

1) Ca2+ реагирует с трипонином;

2) Ca2+ активирует АТФ-азу;

3) Ca2+ снимает заряды с АДФ, АТФ, АТФ-азы.

Взаимодействие ионов Ca с тропонином приводит к изменению расположения последнего на актиновой нити, открываются активные центры тонкой протофибриллы. За счет них формируются поперечные мостики между актином и миозином, которые перемещают актиновую нить в промежутки между миозиновой нитью. При перемещении актиновой нити относительно миозиновой происходит сокращение мышечной ткани.

Итак, главную роль в механизме мышечного сокращения играют белок тропонин, который закрывает активные центры тонкой протофибриллы и ионы Ca.

Физиология скелетных и гладких мышц

Лекция 5

У позвоночных и человека три вида мышц : поперечнополосатые мышцы скелета, поперечнополосатая мышца сердца – миокард и гладкие мышцы, образуюцие стенки полых внутренних органов и сосудов.

Анатомической и функциональной единицей скелетных мышц является нейромоторная единица - двигательный нейрон и иннервируемая им группа мышечных волокон. Импульсы, посылаемые мотонейроном, приводят в действие все образующие ее мышечные волокна.

Скелетные мышцы состоят из большого количества мышечных волокон. Волокно поперечнополосатой мышцы имеет вытянутую форму, диаметр его от 10 до 100 мкм, длина волокна от нескольких сантиметров до 10-12 см. Мышечная клетка окружена тонкой мембраной – сарколеммой , содержит саркоплазму (протоплазму) и многочисленные ядра . Сократительной частью мышечного волокна являются длинные мышечные нити – миофибриллы , состоящие в основном из актина, проходящие внутри волокна от одного конца до другого, имеющие поперечную исчерченность. Миозин в гладких мышечных клетках находится в дисперсном состоянии, но содержит много белка, играющего важную роль в поддержании длительного тонического сокращения.

В период относительного покоя скелетные мышцы полностью не расслабляются и сохраняют умеренную степень напряжения, т.е. мышечный тонус .

Основные функции мышечной ткани:

1)двигательная – обеспечение движения

2)статическая – обеспечение фиксации, в том числе и в определенной позе

3)рецепторная – в мышцах имеются рецепторы, позволяющие воспринимать собственные движения

4)депонирующая – в мышцах запасаются вода и некоторые питательные вещества.

Физиологические свойства скелетных мышц:

Возбудимость . Ниже, чем возбудимость нервной ткани. Возбуждение распространяется вдоль мышечного волокна.

Проводимость . Меньше проводимости нервной ткани.

Рефрактерный период мышечной ткани более продолжителен, чем нервной ткани.

Лабильность мышечной ткани значительно ниже, чем нервной.

Сократимость – способность мышечного волокна изменять свою длину и степень напряжения в ответ на раздражение пороговой силы.

При изотоническом сокращении изменяется длина мышечного волокна без изменения тонуса. При изометрическом сокращении возрастает напряжение мышечного волокна без изменения его длины.

В зависимости от условий стимуляции и функционального состояния мышцы может возникнуть одиночное, слитное (тетаническое) сокращение или контрактура мышцы.

Одиночное мышечное сокращение. При раздражении мышцы одиночным импульсом тока возникает одиночное мышечное сокращение.

Амплитуда одиночного сокращения мышцы зависит от количества сократившихся в этот момент миофибрилл. Возбудимость отдельных групп волокон различна, поэтому пороговая сила тока вызывает сокращение лишь наиболее возбудимых мышечных волокон. Амплитуда такого сокращения минимальна. При увеличении силы раздражающего тока в процесс возбуждения вовлекаются и менее возбудимые группы мышечных волокон; амплитуда сокращений суммируется и растет до тех пор, пока в мышце не останется волокон, не охваченных процессом возбуждения. В этом случае регистрируется максимальная амплитуда сокращения, которая не увеличивается, несмотря на дальнейшее нарастание силы раздражающего тока.

Тетаническое сокращение . В естественных условиях к мышечным волокнам поступают не одиночные, а ряд нервных импульсов, на которые мышца отвечает длительным, тетаническим сокращением, или тетанусом . К тетаническому сокращению способны только скелетные мышцы. Гладкие мышцы и поперечнополосатая мышца сердца не способны к тетаническому сокращению из-за продолжительного рефрактерного периода.

Тетанус возникает вследствие суммации одиночных мышечных сокращений. Чтобы возник тетанус, необходимо действие повторных раздражений (или нервных импульсов) на мышцу еще до того, как закончится ее одиночное сокращение.

Если раздражающие импульсы сближены и каждый из них приходится на тот момент, когда мышца только начала расслабляться, но не успела еще полностью расслабиться, то возникает зубчатый тип сокращения (зубчатый тетанус ).

Если раздражающие импульсы сближены настолько, что каждый последующий приходится на время, когда мышца еще не успела перейти к расслаблению от предыдущего раздражения, то есть происходит на высоте ее сокращения, то возникает длительное непрерывное сокращение, получившее название гладкого тетануса .

Гладкий тетанус – нормальное рабочее состояние скелетных мышц обусловливается поступлением из ЦНС нервных импульсов с частотой 40-50 в 1с.

Зубчатый тетанус возникает при частоте нервных импульсов до 30 в 1с. Если мышца получает 10-20 нервных импульсов в 1с, то она находится в состоянии мышечного тонуса , т.е. умеренной степени напряжения.

Утомление мышц . При длительном ритмическом раздражении в мышце развивается утомление. Признаками его являются снижение амплитуды сокращений, увеличение их латентных периодов, удлинение фазы расслабления и, наконец, отсутствие сокращений при продолжающемся раздражении.

Еще одна разновидность длительного сокращения мышц - контрактура . Она продолжается и при снятии раздражителя. Контрактура мышцы наступает при нарушении обмена веществ или изменении свойств сократительных белков мышечной ткани. Причинами контрактуры могут быть отравление некоторыми ядами и лекарственными средствами, нарушение обмена веществ, повышение температуры тела и другие факторы, приводящие к необратимым изменениям белков мышечной ткани.

Функции : в составе опорно-двигательной системы, работа внутренних органов.

Классификация:

Гладкие/неисчерченные. Актин и миозин не имеет поперечнойисчерченности.

Поперечно-полосатые (исчерч.). Расположение миозина и актина такое, что появляется исчерченность.

Развитие мыш. ткани

1.Мезенхимные (внутр. органы)

2.Эпидермальные (обеспечивают работу потовых, слезных желез. Клетки имеют отросчатую форму для выведения секрета

3. Нейтральные (сужение/расширение зрачка)

4. Целомические (миокард, образуются из целомич. выстилки

5. Соматические (миотомные). Скелетная мускулатура, передняя часть пищеварит. тракта, глазодвиг. мыщцы.

Из мезодермы образуются сомиты – парные метамерные структуры

Дерматом (соед. ткань)

Миотом (мыш. ткань скелетная)

Склеротом (позвонки)

Гладкая мышечная ткань

Миоцит. Форма веретенообр., от 20 до 500 микрон. Толщина 5-8 мкн. Ядро палочковидное. Ядро может перекручиваться, много митохондрий, слабо развиты аппарат Гольджи и ЭПС. Имеются актиновые и миозиновые элементы, располагаются продольно. Окружен базальной мембраной, вней отверстия, обеспечивают связь с соседними миоцитами. в баз.мембрану вплетены волокна ретикулярные, коллагеновые, эластические ->энжомизий (баз. мембрана с волокнами).

Миоциты объединены в пучки, окруженные рыхлой волокнистой соед. тканью ->перимизий.

Пучки с перимизием объединяются ->мыщца + эпимизий. Миоциты могут делиться.

Поперечно-полосатая мышечная ткань

1. Сердечная ткань

Кардиомиоциты: сократительные и проводящие.

Сократительные кардиомиоциты

Форма удлиненная, близка к цилиндрической, длина 100-150 мкм. Торцевые части соединяются -> цепочки. Кардиомицеты, где соединяются – плотный контакт, имеют там вставочные диски. Мыш. волокно – цепочки кардиомицетов. Боковые поверхности покрыты базальной мембраной, могут ветвиться ->еть. 1-2 ядра, полиплоидные. Имеют фибриллы из актина и миозина ->поперечнаяисчерченность.

Проводящие кардиомицеты

Более крупные, мало миофибрилл, клетки соединяются торцевыми частями и боковыми поверхностями. Вставочные диски более простого строения. Передача сигнала сократительнымкардиомицетом.

В составе миокарда (средняя стенка сердца) эндомизий и перимизий.

2. Скелетная поперечно-полосатая мышечная ткань.

Мыш. волокно/миосимпласт/симпласт – основной элемент скелетной поперечно-полосатоймыш. ткани.

Мыш. волокно окружено сарколеммой (плазмолемма + базальная мембрана). Между мышечными волокнами миосотеллитоциты.

Характеристика мышечного волокна

Десятки тысяч ядер, очень вытянутые.

Саркоплазма – внутр. содержимое клетки. Наход. миофибриллы (актин, миозин), митохондрии, их цепочки. Много миоглобина и гликогена.

Миосателлитоциты. Одноядерные, являются камбиальными, из них получается мышечное волокно.

Типы мышечных волокон: красные, белые и переходные.

Белые – гликогена больше, миоглобина меньше, происходит гликолиз и быстро поступает энергия.

Переходные – располагаются мозаично между белыми и красными.

Мышечные волокна окружены эндомизием, формируют пучки + перимизий ->мыщцы + эпимизий (рыхлая соед. ткань).

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png