Гладкие мышцы, формирующие стенки (мышечные слои) внутренних органов делят на два типа – висцеральные (т. е. внутренние) гладкие мышцы, выстилающие стенки желудочно-кишечного тракта и мочевыделительного тракта, и унитарные – гладкие мышцы, расположенные в стенках сосудов, в зрачке и хрусталике глаза и у корней волос кожного покрова (мышцы, взъерошивающие шерсть у животных). Эти мышцы построены из веретенообразных одноядерных клеток, не имеющих поперечной исчерченности, что обусловлено хаотичным расположением сократительных белков в их волокнах. Мышечные волокна относительно коротки (от 50 до 200 мкм), они имеют ветвления на обоих концах и плотно прилегают друг к другу, образуя длинные и тонкие цилиндрические пучки диаметром 0,05-0,01 мм, которые ветвятся и соединяются с другими пучками. Их сеть образует во внутренних органах либо слои (пласты), либо еще более толстые пучки.

Соседние клетки в гладких мышцах функционально связаны между собой низкоомными электрическими контактами – нексусами . За счет этих контактов потенциалы действия и медленные волны деполяризации беспрепятственно распространяются с одного мышечного волокна на другое. Поэтому несмотря на то, что двигательные нервные окончания расположены на небольшом числе мышечных волокон, в сократительную реакцию вовлекается вся мышца. Следовательно, гладкие мышцы представляют собой не только морфологический, но и функциональный синцитий.

Как и в скелетных мышцах, сократительные белки гладких мышц активируются в результате повышения концентрации ионов кальция в саркоплазме. Однако кальций поступает не из цистерн саркоплазматического ретикулума, как у скелетных мышц, а из внеклеточной среды, по градиенту концентрации, через плазматическую мембрану клетки, по медленным потенциалчувствительным кальциевым каналам, которые активируются в результате деполяризации мембраны при её возбуждении. Это существенно влияет на развитие потенциала действия гладкомышечных клеток, что наглядно отражает кривая ПД (Рис. 12. 1).

Рис.12. Потенциал действия (1) и кривая

сокращения (2) гладкомышечной клетки.

А – фаза деполяризации (Na + - вход);

Б – «кальциевое плато» (Ca 2+ - вход);

В – фаза реполяризации (К + - выход);

(пунктиром обозначен ПД скелетной мышцы)

Медленный, но достаточно существенный по величине входящий кальциевый ток формирует на кривой ПД характерное «кальциевое плато», которое не позволяет быстро деполяризовать мембрану, что приводит к значительному возрастанию продолжительности рефрактерного периода. Удаляется кальций из клетки еще медленнее, через Ca 2+ - АТФ-азы плазматической мембраны. Все это существенно сказывается как на характеристиках возбудимости, так и на сократительной способности гладких мышц. Гладкие мышцы гораздо менее возбудимы, чем поперечнополосатые и возбуждение по ним распространяется с очень небольшой скоростью – 2-15 см/с., кроме того, они сокращаются и расслабляются очень медленно, а время одиночного сокращения может продолжаться несколько секунд.

Из-за продолжительного рефрактерного периода длительность потенциала действия гладкомышечного волокна практически совпадает со временем поступления и удаления ионов кальция из клетки, то есть время развития ПД и длительность сокращения практически совпадают (Рис.12. 2) В результате гладкие мышцы практически не способны к формированию классического тетануса. Из-за очень медленного расслабления слияние одиночных сокращений («тетанус гладких мышц») возникает даже при низкой частоте раздражения и является, в большей степени, результатом медленного волнообразного вовлечения в длительное сокращение клеток, соседних с раздражаемой.

Гладкие мышцы способны к осуществлению относительно медленных и длительных тонических сокращений. Медленные, имеющие ритмический характер, сокращения гладких мышц желудка, кишечника, мочеточников и других органов обеспечивают перемещение содержимого этих органов. Длительные тонические сокращения гладких мышц особенно хорошо выражены в сфинктерах полых органов, которые препятствуют выходу содержимого этих органов.

Гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол, также находятся в состоянии постоянного тонического сокращения. Изменение тонуса мышц стенок артериальных сосудов влияет на величину их просвета и, следовательно, на уровень кровяного давления и кровоснабжения органов.

Важным свойством гладких мышц является их пластичность, т. е. способность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. Эти различия хорошо наблюдать при медленном растяжении гладкой и скелетной мышцы. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остается растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования полых органов. Благодаря высокой пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии. Так, например, пластичность мышц мочевого пузыря по мере его наполнения предотвращает избыточное повышение давления внутри его.

Адекватным раздражителем для гладких мышц является их быстрое и сильное растяжение, что вызывает их сокращение, обусловленное нарастающей при растяжении деполяризацией клеток. Частота потенциалов действия (и соответственно частота сокращений.) тем больше, чем больше и быстрее растягивается гладкая мышца. Благодаря такому механизму обеспечивается, в частности, продвижение пищевого комка по пищеварительному тракту. Растянутая комком пищи мышечная стенка кишки отвечает сокращением и таким образом проталкивает комок в следующий участок кишки. Сокращение, индуцируемое растяжением, играет важную роль в авторегуляции тонуса кровеносных сосудов, а также обеспечивает непроизвольное (автоматическое) опорожнение переполненного мочевого пузыря в тех случаях, когда нервная регуляция отсутствует в результате повреждения спинного мозга.

Нервная регуляция гладких мышц осуществляется через симпатические и парасимпатические волокна вегетативной нервной системы.

Особенность висцеральных гладкомышечных клеток состоит в том, что они способны сокращаться и при отсутствии прямых нервных влияний в условиях их изоляции и денервации, и даже после блокады нейронов вегетативных ганглиев.

В этом случае сокращения возникают не в результате передачи нервных импульсов с нерва, а вследствие активности собственных клеток (пейсмекеров ), которые идентичны по структуре другим мышечным клеткам, но отличаются по электрофизиологическим свойствам – обладают автоматией. В этих клетках активность мембранных ионных каналов отрегулирована таким образом, что их мембранный потенциал не уравновешивается, а постоянно «дрейфует». В результате на мембране регулярно возникают препотенциалы или пейсмекерные потенциалы , с определенной частотой деполяризующие мембрану до критического уровня. При возникновении потенциала действия в пейсмекере возбуждение распространяется от них к соседним, что приводит к их возбуждению и сокращению. В результате последовательно сокращается один участок мышечного слоя за другим.

Из этого следует, что висцеральные гладкие мышцы контролируются вегетативной нервной системой, которая осуществляет в отношении этих мышц не пусковую, а настроечную, регулирующую, функцию. Это означает, что сама активность висцеральных гладких мышц возникает спонтанно, без нервных влияний, но уровень этой активности (сила и частота сокращений) изменяется под влиянием вегетативной нервной системы. В частности, изменяя скорость «дрейфа» мембранного потенциала, нервные импульсы вегетативных волокон воздействуют на частоту сокращений висцеральных гладкомышечных волокон.

Унитарные гладкие мышцы также могут быть спонтанно активными, но они сокращаются в основном под влиянием нервных импульсов вегетативных волокон. Их особенность состоит в том, что приходящий к ним одиночный нервный импульс не способен вызвать сокращение, в ответ возникает лишь временная подпороговая деполяризация мембраны мышечной клетки. Только когда по вегетативному нервному волокну следует серия импульсов с частотой около 1 импульса в 1 сек. и более, возможно развития потенциала действия мышечного волокна и его сокращение. То есть, унитарные мышечные волокна «суммируют» нервные импульсы и отвечают на раздражение когда частота импульсов достигает определенной величины.

В унитарной гладкой мышце, как и в висцеральных гладких мышцах, возбужденные мышечные клетки оказывают влияние на соседние клетки. В результате возбуждение захватывает много клеток (отсюда название этих мышц – унитарные, т. е. состоящие из унит – «единиц» с большим числом мышечных волокон в каждой из них).

В нервной регуляции сокращения гладких мышц участвуют два медиатора – ацетилхолин (АХ) и адреналин (норадреналин). Способ действия АХ в гладких мышцах такой же, как и в скелетных: АХ увеличивает ионную проницаемость мембраны, вызывая ее деполяризацию. Механизм действия адреналина неизвестен. Скелетные мышечные волокна реагируют на действие медиатора только в области концевой пластинки (нервно-мышечного синапса), тогда как гладкомышечные волокна отвечают на действие медиатора независимо от места его приложения. Поэтому на гладкие мышцы могут влиять медиаторы, содержащиеся в крови (например, адреналин, оказывающий длительное влияние на гладкие мышцы, вызывает их сокращение).

Из всего вышесказанного следует еще одна характерная особенность гладких мышц – их сокращение не требует больших энергетических затрат.

По структуре гладкая мышца отличается от поперечнополосатой скелетной мышцы и мышцы сердца. Она состоит из клеток веретенообразной формы длиной от 10 до 500 мкм, шириной 5-10 мкм, содержащих одно ядро. Гладкомышечные клетки лежат в виде параллельно ориентированных пучков, расстояние между ними заполнено коллагеновыми и эластическими волокнами, фибробластами, питающими магистралями. Мембраны прилежащих клеток образуют нексусы, которые обеспечивают электрическую связь между клетками и служат для передачи возбуждения с клетки на клетку. Кроме того плазматическая мембрана гладкомышечной клетки имеет особые впячивания - кавеолы, благодаря которым площадь мембраны увеличивается на 70%. Снаружи плазматическая мембрана покрыта базальной мембраной. Комплекс базальной и плазматической мембраны называют сарколеммой. В гладкой мышцы отсутствуют саркомеры. Основу сократительного аппарата составляют миозиновые и актиновые протофибриллы. В ГМК актиновых протофибрилл намного больше, чем в поперечно-полосатом мышечном волокне. Соотношение актин/миозин = 5:1.

Толстые и тонкие миофиламеты распылены по всей саркоплазме гладкого миоцита и не имеют такой стройной организации, как в поперечно-полосатой скелетной мышце. При этом тонкие филаменты прикрепляются к плотным тельцам. Некоторые из этих телец расположены на внутренней поверхности сарколеммы, но большинство из них находятся в саркоплазмме. Плотные тельца состоят из альфа-актинина – белка обнаруженного в структуре Z-мембраны поперечнополосатых мышечных волокон. Некоторые из плотных телец расположенных на внутренней поверхности мембраны соприкасаются с плотными тельцами прилегающей клетки. Тем самым сила, создаваемая одной клеткой может передаваться следующей. Толстые миофиламенты гладкой мышцы содержат миозин, а тонкие – актин, тропомиозин. При этом в составе тонких миофиламентов не обнаружен тропонин.

Гладкие мышцы встречаются в стенках кровеносных сосудах, коже и внутренних органах.

Гладкая мышца играет важную роль в регуляции

    просвета воздухоносных путей,

    тонуса кровеносных сосудов,

    двигательной активности желудочнокишечного тракта,

    матки и др.

Классификация гладких мышц:

    Мультиунитарные, входят в состав цилиарной мышцы, мышц радужки глаза, мышцы поднимающей волос.

    Унитарные (висцеральная), находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже.

Мультиунитарная гладкая мышца.

    состоит из отдельных гладкомышечных клеток, каждая из которых, находится независимо друг от друга;

    имеет большую плотность иннервации;

    как и поперечнополосатые мышечные волокна, снаружи покрыты веществом, напоминающим базальную мембрану, в состав которого входят, изолирующие клетки друг от друга, коллагеновые и гликопротеиновые волокна;

    каждая мышечная клетка может сокращаться отдельно и ее активность регулируется нервными импульсами;

Унитарная гладкая мышца (висцеральная).

    представляет собой пласт или пучок, а сарколеммы отдельных миоцитов имеют множественные точки соприкосновения. Это позволяет возбуждению распространяться от одной клетки к другой

    мембраны рядом расположенных клеток образуют множественные плотные контакты (gap junctions), через которые ионы имеют возможность свободно передвигаться из одной клетки в другу

    потенциал действия, возникающий на мембране гладкомышечной клетки, и ионные потоки могут распространяться по мышечному волокну, обеспечивая возможность одновременного сокращения большого количества отдельных клеток. Данный тип взаимодействия известен как функциональный синцитий

Важной особенность гладкомышечных клеток является их способность к самовозбуждению (автоматии) , то есть они способны генерировать потенциал действия без воздействия внешнего раздражителя.

Постоянный мембранный потенциал покоя в гладких мышцах отсутствует, он постоянно дрейфует и в среднем составляет -50мВ. Дрейф происходит спонтанно, без каких-либо влияний и когда мембранный потенциал покоя достигает критического уровня возникает потенциал действия, который и вызывает сокращение мышцы. Продолжительность потенциала действия достигает нескольких секунд, поэтому и сокращение тоже может длиться несколько секунд. Возникшее возбуждение затем распространяется через нексус на соседние участки вызывая их сокращения.

Спонтанная (независимая) активность связана с растяжением гладкомышечных клеток и когда они растягиваются возникает потенциал действия. Частота возникновения потенциалов действия зависит от степени растяжения волокна. Например, перистальтические сокращения кишечника усиливаются при растягивании его стенок химусом.

Унитарные мышцы в основном сокращаются под влиянием нервных импульсов, но иногда возможны и спонтанные сокращения. Одиночный нервный импульс не способен вызывать ответной реакции. Для ее возникновение необходимо суммировать несколько импульсов.

Для всех гладких мышц при генерации возбуждения характерна активация кальциевых каналов, поэтому в гладких мышцах все процессы идут медленнее по сравнению со скелетной.

Скорость проведения возбуждения по нервным волокнам к гладким мышцам составляет 3-5 см в секунду.

Одним из важных раздражителей инициирующих сокращение гладких мышц является их растяжение. Достаточное растяжение гладкой мышцы обычно сопровождается появлением потенциалов действия. Таким образом, появлению потенциалов действия при растяжении гладкой мышцы способствует два фактора:

    медленные волновые колебания мембранного потенциала;

    деполяризация, вызываемая растяжением гладкой мышцы.

Данное свойство гладкой мышцы позволяет ей автоматически сокращаться при растяжении. Например, во время переполнения тонкого кишечника возникает перистальтическая волна, которая и продвигает содержимое.

Сокращение гладкой мышцы.

Гладкие мышцы, как и поперечно-полосатые, содержат миозин, с поперечными мостиками, гидролизующий АТФ, и для того, чтобы вызвать сокращение, взаимодействует с актином. В противоположность поперечно-полосатым мышцам, тонкие филаменты гладких мышц содержат только актин и тропомиозин и не содержат тропонин; регуляция сократительной активности в гладких мышцах происходит благодаря связыванию Са ++ с кальмодулином, активирующим киназу миозина, которая фосфорилирует регуляторную цепь миозина. Это приводит к гидролизу АТФ и запускает цикл образования поперечных мостиков. В гладкой мышце движение актомиозиновых мостиков является более медленным процессом. Распад молекул АТФ и высвобождение энергии, необходимой для обеспечения движения актомиозиновых мостиков происходит не так быстро как в поперечнополосатой мышечной ткани.

Экономичность энергозатрат в гладкой мышце является чрезвычайно важным в общем потреблении организмом энергии, так как, кровеносные сосуды, тонкий кишечник, мочевой пузырь, желчный пузырь и другие внутренние органы постоянно находятся в тонусе.

Во время сокращения гладкая мышца способна укорачиваться вплоть до 2/3 ее первоначальной длины (скелетная мышца от 1/4 до 1/3 длины). Это позволяет полым органам выполнять свою функцию изменяя свой просвет в значительных пределах.

Важным свойством гладкой мышцы является ее большая пластичность т. е. способность сохранять приданную растяжением длину без изменения напряжения. Различие между скелетной мышцей, обладающей малой пластичностью, и гладкой мышцей с хорошо выраженной пластичностью, легко обнаруживается, если их сначала медленно растянуть, а затем снять растягивающий груз. тотчас же укорачивается после снятия груза. В отличие от этого гладкая мышца после снятия груза остается растянутой до тех пор, пока под влиянием какого-либо раздражения не возникает ее активного сокращения.

Свойство пластичности имеет очень большое значение для нормальной деятельности гладких мышц стенок полых органов, например мочевого пузыря: благодаря пластичности гладкой мускулатуры стенок пузыря давление внутри него относительно мало изменяется при разной степени наполнения.

Возбудимость и возбуждение

Гладкие мышцы менее возбудимы, чем скелетные: их пороги раздражения выше, а хронаксия длиннее. Потенциалы действия большинства гладкомышечных волокон имеют малую амплитуду (порядка 60 мв вместо 120 же в скелетных мышечных волокнах) и большую продолжительность - до 1-3 секунд. На рис. 151 показан потенциал действия одиночного волокна мышцы матки.

Рефрактерный период продолжается в течение всего периода потенциала действия, т. е. 1-3 секунд. Скорость проведения возбуждения варьирует в разных волокнах от нескольких миллиметров до нескольких сантиметров в секунду.

Существует большое число различных типов гладких мышц в теле животных и человека. Большинство полых органов тела выстлано гладкими мышцами, имеющими сенцитиальный тип строения. Отдельные волокна таких мышц очень тесно примыкают друг к другу и создается впечатление, что морфологически они составляют единое целое.

Однакоэлектронномикроскопические исследования показали, что мембранной и протоплазматической непрерывности между отдельными волокнами мышечного синцития не существует: они отделены друг от друга тонкими (200-500 Å) щелями. Понятие «синцитиальное строение» является в настоящее время скорее физиологическим, чем морфологическим.

Синцитий - это функциональное образование, которое обеспечивает то, что потенциалы действия и медленные волны деполяризации могут беспрепятственно распространяться с одного волокна на другое. Нервные окончания расположены только на небольшом числе волокон синцития. Однако вследствие беспрепятственного распространения возбуждения с одного волокна на другое вовлечение в реакцию всей мышцы может происходить, если нервный импульс поступает к небольшому числу мышечных волокон.

Сокращение гладкой мышцы

При большой силе одиночного раздражения может возникать сокращение гладкой мышцы. Скрытый период одиночного сокращения этой мышцы значительно больше, чем скелетной мышцы, достигая, например, в кишечной мускулатуре кролика 0,25- 1 секунды. Продолжительность самого сокращения тоже велика (рис. 152 ): в желудке кролика она достигает 5 секунд, а в желудке лягушки - 1 минуты и более. Особенно медленно протекает расслабление после сокращения. Волна сокращения распространяется по гладкой мускулатуре тоже очень медленно, она проходит всего около 3 см в секунду. Но эта медленность сократительной деятельности гладких мышц сочетается с большой их силой. Так, мускулатура желудка птиц способна поднимать 1 кг на 1см2 своего поперечного сечения.

Тонус гладкой мышцы

Вследствие медленности сокращения гладкая мышца даже при редких ритмических раздражениях (для желудка лягушки достаточно 10-12 раздражений в минуту) легко переходит в длительное состояние стойкого сокращения, напоминающее тетанус скелетных мышц. Однако энергетические расходы при таком стойком сокращении гладкой мышцы очень малы, что отличает это сокращение от тетануса поперечнополосатой мышцы.

Причины, вследствие которых гладкие мышцы сокращаются и расслабляются много медленнее, чем скелетные, полностью еще не выяснены. Известно, что миофибриллы гладкой мышцы так же, как и скелетной мышцы, состоят из миозина и актина. Однако в гладких мышцах нет поперечной исчерченности, нет мембраны Z и они гораздо богаче саркоплазмой. По-видимому, эти особенности структуры гладких мышечных волн и обусловливают медленный темп сократительного процесса. Этому соответствует и относительно низкий уровень обмена веществ гладких мышц.

Автоматия гладких мышц

Характерной особенностью гладких мышц, отличающей их от скелетных, является способность к спонтанной автоматической деятельности. Спонтанные сокращения можно наблюдать при исследовании гладких мышц желудка, кишок, желчного пузыря, мочеточников и ряда других гладкомышечных органов.

Автоматия гладких мышц имеет миогенное происхождение. Она присуща самим мышечным волокнам и регулируется нервными элементами, которые находятся в стенках гладкомышечных органов. Миогенная природа автоматии доказана опытами на полосках мышц кишечной стенки, освобожденных путем тщательной препаровки от прилежащих к ней нервных сплетений. Такие полоски, помещенные в теплый растввр Рингера-Локка, который насыщается кислородом, способны совершать автоматические сокращения. При последующей гистологической проверке было обнаружено отсутствие в этих мышечных полосках нервных клеток.

В гладких мышечных волокнах различают следующие спонтанные колебания мембранного потенциала: 1) медленные волны деполяризации с длительностью цикла порядка нескольких минут и амплитудой около 20 мв; 2) малые быстрые колебания потенциала, предшествующие возникновению потенциалов действия; 3) потенциалы действия.

На все внешние воздействия гладкая мышца реагирует изменении частоты спонтанной ритмики, следствием которой являются сокращения и расслабления мышцы. Эффект раздражения гладкой мускулатуры кишки зависит от соотношения между частотой стимуляции и собственной частотой спонтанной ритмики: при низком тонусе - при редких спонтанных потенциалах действия - приложенное раздражение усиливает тонус при высоком же тонусе в ответ на раздражение возникает расслабление, так как чрезмерное учащение импульсации приводит к тому, что каждый следующий импульс попадает в рефрактерную фазу от предыдущего.

Гладкие мышцы -- сократительная ткань, состоящая из отдельных клеток и не имеющая поперечной исчерченности (Рис. 1.). У гладкомышечной клетки веретенообразная форма, длина которой примерно 50 - 400 мкм и толщина 2-10 мкм. Отдельные нити соединены особыми межклеточными контактами - десмосомами и образуют сеть с вплетенными в нее коллагеновыми волокнами. Отсутствие поперечной исчерченности, характерной для сердечной и скелетной мускулатуры, объясняется нерегулярным распределением миозиновых и актиновых нитей. Укорачиваются гладкие мышцы также за счет скольжения миофиламентов относительно друг друга, но скорость скольжения и расщепление АТФ здесь в 100 - 1000 раз ниже, чем у поперечнополосатых мышц. В связи с этим гладкие мышцы особенно хорошо приспособлены для длительного устойчивого сокращения, не приводящего к утомлению и значительным энергозатратам.

Гладкие мышцы входят в состав внутренних органов, сосудов и кожи. Они отличаются наличием интересных функциональных особенностей: способностью осуществлять относительно медленные движения и длительные тонические сокращения. Медленные движения (сокращения), часто имеющие ритмический характер сокращения гладких мышц стенок полых органов: желудка, кишечника, протоков пищеварительных желез, мочевого пузыря, желчного пузыря, обеспечивают перемещение содержимого этих органов. Примером являются маятникообразные и перистальтические движения кишечника. Длительные тонические сокращения гладких мышц особенно резко выражены в сфинктерах полых органов; их тонические сокращения препятствуют выходу содержимого. Это обеспечивает нахождение желчи в желчном пузыре и мочи в мочевом пузыре, формирование каловых масс в толстом кишечнике.

Показано строение (слева) поперечнополосатых и гладких мышц у позвоночных и зависимость между электрической (сплошные линии) и механической (пунктирные линии) активностью (справа). А. Поперечнополосатые мышцы являются многоядерными клетками цилиндрической формы. В них генерируются быстрые потенциалы действия и быстрые сокращения. Б. Волокна гладкой мышцы имеют по одному ядру, небольшой размер и веретенообразную форму. Они соединены между собой боковыми поверхностями через щелевые контакты и образуют электрически объединенные группы клеток.

Иннервация диффузная, активация волокон осуществляется за счет высвобождения медиатора из расширений, расположенных вдоль вегетативного нерва. Несмотря на то, что потенциалы действия клеток гладких мышц быстрые, результирующие сокращения развиваются медленно и протекают долго.

В состоянии постоянного тонического сокращения находятся тонкие гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол. Тонус мышечного слоя стенок артерий регулирует величину кровяного давления и кровоснабжение органов.

Двигательная иннервация гладких мышц осуществляется отростками клеток вегетативной нервной системы, чувствительная - отростками клеток симпатических ганглиев. Тонус и двигательная функция гладких мышц регулируется также и гуморальными влияниями.

Все гладкие мышц можно разделить на две группы:

1. Гладкие мышцы с миогенной активностью. Во многих гладких мышцах кишечника (например, слепой кишки) одиночное сокращение, вызванное потенциалом действия, продолжается несколько секунд. Следовательно, сокращения, следующие с интервалом менее 2с, накладываются друг на друга, а при частоте выше 1 Гц сливаются в более или менее гладкий тетанус (тетанообразный тонус) (рис.2). Природа такого тетануса миогенная; в отличие от скелетной мышцы гладкие мышцы кишечника, мочеточника, желудка и матки способны к спонтанным тетанообразным сокращениям после изоляции и денервации и даже при блокаде нейронов интрамуральных ганглиев. Следовательно, их потенциалы действия не обусловлены передачей к мышце нервных импульсов, а имеют миогенное происхождение.

Миогенное возбуждение возникает в клетках-ритмоводителях (пейсмекерах), которые идентичны другим мышечным клеткам по структуре, но отличаются электрофизиологическими свойствами. Пейсмекерные потенциалы деполяризуют мембрану до порогового уровня, вызывая потенциал действия. Из-за поступления в клетку катионов (главным образом Са2+) мембрана деполяризуется до нулевого уровня и даже на несколько миллисекунд меняет полярность до +20 мВ. После реполяризации следует новый пейсмекерный потенциал, обеспечивающий генерацию следующего потенциала действия. При воздействии на препарат толстой кишки ацетилхолина пейсмекерные клетки деполяризуются до околопорогового уровня, и частота возникновения потенциалов действия возрастает. Вызванные ими сокращения сливаются до почти гладкого тетануса. Чем выше частота следования потенциалов действия, тем слитнее тетанус и тем сильнее сокращение, возникающее в результате суммации одиночных сокращений. И, напротив, нанесение на тот же препарат норадреналина гиперполяр образует мембрану и в результате снижает частоту возникновения потенциалов действия и величину тетануса. Таковы механизмы модуляции спонтанной активности пейсмекеров вегетативной нервной системой и ее медиаторами.

Рис.2.

Обработка ацетилхолином (стрелка) повышает частоту возникновения потенциалов действия так, что одиночные сокращения сливаются в тетанус. Нижняя запись - временной ход мышечного напряжения.

2. Гладкие мышцы без миогенной активности. В отличие от мышц кишечника у гладких мышц артерий, семенных протоков, радужки, а также у ресничных мышц спонтанная активность обычно слабая или ее вообще нет. Их сокращение возникает под действием импульсов, поступающих к этим мышцам по вегетативным нервам. Такие особенности обусловлены структурной организацией их ткани. Хотя клетки в ней электрически связаны нексусами, многие из них образуют прямые синаптические контакты с иннервирующими их аксонами, но привычных нейро-мышечных синапсов в гладкомышечной ткани не образуют. Высвобождение медиатора происходит из многочисленных утолщений (расширений), расположенных по длине вегетативных аксонов (Рис. 1).

Медиаторы достигают путем диффузии мышечных клеток и активизируют их. При этом в клетках возникают возбуждающие потенциалы, переходящие в потенциалы действия, которые вызывают тетанообразное сокращение.

Функции и свойства гладких мышц

Электрическая активность. Висцеральные гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения -- тонуса. Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении -- расслабляется.

Автоматия. ПД гладких мышечных клеток имеют авторитмический (пейсмекерный) характер, подобно потенциалам проводящей системы сердца. Пейсмекерные потенциалы регистрируются в различных участках гладкой мышцы. Это свидетельствует о том, что любые клетки висцеральных гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге -- тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов. Наконец, растяжение мускулатуры матки растущим плодом служит одной из причин начала родовой деятельности.

Пластичность. Еще одной важной специфической характеристикой гладкой мышцы является изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы. Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормальному функционированию внутренних полых органов.

Связь возбуждения с сокращением. Изучать соотношения между электрическими и механическими проявлениями в висцеральной гладкой мышце труднее, чем в скелетной или сердечной, так как висцеральная гладкая мышца находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистрировать одиночный ПД. В основе сокращения как скелетной, так и гладкой мышцы лежит скольжение актина по отношению к миозину, где ион Са2+ выполняет триггерную функцию.

В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным для активации АТФазной активности миозина.

Химическая чувствительность. Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину, АХ, гистамину и др. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

Норадреналин действует на б- и в-адренорецепторы мембраны гладкомышечных клеток. Взаимодействие норадреналина с в-рецепторами уменьшает тонус мышцы в результате активации аденилатциклазы и образования циклического АМФ и последующего увеличения связывания внутриклеточного Са2+. Воздействие норадреналина на б-рецепторы тормозит сокращение за счет увеличения выхода ионов Са2+ из мышечных клеток.

АХ оказывает на мембранный потенциал и сокращение гладкой мускулатуры кишечника действие, противоположное действию норадреналина. Добавление АХ к препарату гладкой мышцы кишечника уменьшает мембранный потенциал и увеличивает частоту спонтанных ПД. В результате увеличивается тонус и возрастает частота ритмических сокращений, т. е. наблюдается тот же эффект, что и при возбуждении парасимпатических нервов. АХ деполяризует мембрану, увеличивает ее проницаемость для Na+ и Са+.

Гладкие мышцы некоторых органов реагируют на различные гормоны. Так, гладкая мускулатура матки у животных в периоды между овуляцией и при удалении яичников относительно невозбудима. Во время течки или у животных, лишенных яичников, которым вводился эстроген, возбудимость гладкой мускулатуры возрастает. Прогестерон увеличивает мембранный потенциал еще больше, чем эстроген, но в этом случае электрическая и сократительная активность мускулатуры матки затормаживается.

В организме домашних животных гладкие мышцы находятся во внутренних органах, в стенке сосудов и коже. Гладкие мышцы в отличие от поперечно-полосатых не имеют выраженной поперечной исчерченности, сокращаются относительно медленно, отвечают сокращением на растяжение и могут длительное время находиться в сокращенном состоянии без утомления. Они состоят из удлиненных клеток веретеновидной формы. В функциональном отношении существуют различные типы гладких мышц. Одни сокращаются с определенной силой в ответ на возбуждение и не обладают спонтанной автоматической активностью (ресничная, пиломоторная, цилиарная; мышцы мигательной перепонки, мочевого пузыря, кровеносных сосудов); другие способны к спонтанной автоматической ритмической активности, которая изменяется под влиянием двигательных нервов (мышцы желудочно-кишечного тракта, мочеточников и матки).

Длина гладкомышечных клеток от 30 до 500 мкм, диаметр от 2 до 10 мкм. Каждая клетка имеет плазматическую мембрану неодинаковой толщины у разных органов, толщина и строение мембраны такие же как и у других клеток. На поверхности клеток гладких мышц имеются вдавливания внутрь клетки в виде мелких сферических карманов и боковых отростков. Боковые отростки обеспечивают звеньевую связь гладкомышечных клеток. В участке нексуса (звена) плазматические мембраны соседних клеток сливаются наружными слоями. Гладкомышечные клетки при помощи отростков группируются в длинные пучки, разделенные соединительнотканными перегородками. Диаметр пучков около 100 мкм. Они ветвятся, формируя тяжи переходов от одного пучка к другому, что важно для деятельности мышцы как единой системы.

Гладкие мышцы иннервируются симпатическими и парасимпатическими нервами. Одно нервное волокно может контактировать с несколькими клетками.

Сократительный аппарат клеток гладких мышц состоит из протофибрилл, сгруппированные в миофибриллы, которые размещаются в клетке параллельно друг другу. В миофибриллах находятся тонкие нити протофибрилл трех типов: актиновые, миозиновые и промежуточные. Первые два типа распределены неравномерно, поэтому клетки гладких мышц не имеют поперечной исчерченности. Нити миозина короткие, они образуют димеры, от которых отходят поперечные мостики с головками. Длинные актиновые и короткие миозиновые нити участвуют в укорочении гладкомышечной клетки при сокращении. В сокращении принимают участие и промежуточные протофибриллы.

Возбудимость гладких мышц . Гладкие мышцы менее возбудимы, чем скелетные: порог возбудимости выше, а хроноксия больше. Мембранный потенциал гладких мышц у различных животных составляет от 40 до 70 мВ. Наряду с ионами Nа+,К+ важную роль в создании потенциала покоя играют также ионы Са++ и Сl-.


Электрическая активность многих клеток гладких мышц внутренних органов проявляется спонтанно, т.е. клетки самовозбуждаются. Следовательно, возбуждение не обусловлено передачей к мышце нервных импульсов, а носит миогенный (как в сердечной мышце) характер. Эту особенность обозначают как “автоматию” гладких мышц.

Сокращения гладких мышц имеют существенные различия по сравнению со скелетными мышцами:

1. Скрытый (латентный) период одиночного сокращения гладкой мышцы значительно больше, чем скелетной (например в кишечной мускулатуре кролика он достигает 0,25 - 1 с).

2. Одиночное сокращение гладкой мышцы значительно продолжительнее, чем скелетной. Так, гладкие мышцы желудка лягушки сокращаются в течение 60 - 80, кролика - 10-20 с.

3. Особенно медленно происходит расслабление после сокращения.

4. Благодаря продолжительному одиночному сокращению гладкая мышца может быть приведена в состояние длительного стойкого сокращения, напоминающего тетаническое сокращение скелетных мышц относительно редкими раздражениями; в этом случае интервал между отдельными раздражениями составляет от одной до десятков секунд.

5. Энергетические расходы при таком стойком сокращении гладкой мышцы очень малы, что отличает это сокращение от тетануса скелетных мышц, поэтому гладкие мышцы потребляют относительно небольшое количество кислорода.

6. Медленное сокращение гладких мышц сочетается с большой силой. Например, мускулатура желудка птиц способен поднимать массу, равную 1 кг на 1 см2 своего поперечного сечения.

7. Одно из физиологически важных свойств гладких мышц - реакция на физиологически адекватный раздражитель растяжение. Любое растяжение гладких мышц вызывает их сокращение. Свойство гладких мышц реагировать на растяжение сокращением играет важную роль для осуществления физиологической функции многих гладкомышечных органов (например, кишечника, мочеточников, матки).

Тонус гладких мышц . Способность гладкой мышцы длительное время находиться в напряжении в покое под влиянием редких импульсов раздражения обозначают тонусом . Длительные тонические сокращения гладких мышц особенно отчетливо выражены в сфинктерах полых органов, стенках кровеносных сосудов.

Все перечисленные факторы (тетанизирующая частота разрядов пейсмекеров, медленное скольжение филаментов, постепенное расслабление клеток) способствуют длительным стойким сокращениям гладких мышц без утомления и при небольшой затрате энергии.

Пластичность и эластичность гладких мышц . Пластичность в гладких мышцах хорошо выражено, что имеет большое значение для нормальной деятельности гладких мышц стенок полых органов: желудка, кишечника, мочевого пузыря. Например, благодаря пластичности гладкой мускулатуры стенок мочевого пузыря давление внутри его относительно мало изменяется при разной степени его наполнения. Эластичность в гладких мышцах выражена слабее, чем в скелетных, но гладкие мышцы способны очень сильно растягиваться.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png